Metabolites (Jun 2020)
Comparison of Metabolomic Profiles of Organs in Mice of Different Strains Based on SPME-LC-HRMS
Abstract
Given that the extent to which genetics alters the metabolomic profile of tissues is still poorly understood, the current study aimed to characterize and investigate the metabolite profiles of brain, liver, kidney and skeletal muscle of two common mouse inbred strains (BALB/c, C57BL/6) and one outbred stock (CD1) for strain-specific differences. Male mice (n = 15) at the age of 12 weeks were used: BALB/c (n = 5), C57BL/6 (n = 5) and CD1 (n = 5). Solid phase microextraction (SPME) was applied for the extraction of analytes from the tissues. SPME fibers (approximately 0.2 mm in diameter) coated with a biocompatible sorbent (4 mm length of hydrophilic-lipophilic balanced particles) were inserted into each organ immediately after euthanasia. Samples were analyzed using liquid chromatography coupled to a Q-Exactive Focus Orbitrap mass spectrometer. Distinct interstrain differences in the metabolomic patterns of brain and liver tissue were revealed. The metabolome of kidney and muscle tissue in BALB/c mice differed greatly from C57BL/6 and CD1 strains. The main compounds differentiating all the targeted organs were alpha-amino acids, purine nucleotides and fatty acid esters. The results of the study indicate that the baseline metabolome of organs, as well as different metabolic pathways, vary widely among general-purpose models of laboratory mice commonly used in biomedical research.
Keywords