International Journal of Forestry Research (Jan 2018)
Height-Diameter Modeling of Cinnamomum tamala Grown in Natural Forest in Mid-Hill of Nepal
Abstract
Tree height (H) and diameter at breast height (D) are key variables to calculate tree volume and biomass. We developed a height-diameter (H-D) model for Cinnamomum tamala by evaluating 18 nonlinear models. Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), mean bias, Mean Absolute Error (MAE), graphical appearance, and biological logic were the criteria used to evaluate the predictive performance of the models. Gompertz model (M14) performed the best for predicting the total height of C. tamala trees with the least RMSE (1.742 m), mean bias (0.012 m), and MAE (1.342 m) and satisfied model assumptions and biological logic. Validation data ranked the Gompertz model as the best model with RMSE (1.546 m), mean bias (-0.106 m), and MAE (1.149 m). Despite the consistent performance of the Gompertz model, it tended to underestimate the height prediction for taller (dominant crown class) and larger trees. Further work on refitting and validation of the proposed model with data from a larger geographic area, wider-ranging sites, and stand conditions is recommended.