BMC Microbiology (Oct 2024)
The enhanced antibacterial and antibiofilm properties of titanium dioxide nanoparticles biosynthesized by multidrug-resistant Pseudomonas aeruginosa
Abstract
Abstract The emergence of Multidrug-resistant (MDR) bacteria are becoming a major worldwide health concern, encouraging the development effective alternatives to conventional antibiotics. The study identified P. aeruginosa and assessed its antimicrobial sensitivity using the Vitek-2 system. Carbapenem-resistant genes were detected through Polymerase chain reaction (PCR). MDR- P. aeruginosa isolates were used to biosynthesize titanium dioxide nanoparticles (TiO2NPs) and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM). A study involving 78 P. aeruginosa isolates revealed that 85.8% were MDR, with meropenem and amikacin showing effectiveness against 70% of the isolates. The most prevalent carbapenemase gene was bla OXA-48 , present in 83% of the isolates. Majority of the isolates formed biofilms, and biosynthesized TiO2NPs were able to reduce biofilm formation by 94%. TiO2NPs exhibited potent antibacterial action against MDR-Gram-negative bacilli pathogens and showed synergistic activity with antibiotics, particularly piperacillin, with a significant fold increase in areas (283%). A new local strain of P. aeruginosa, identified as ON678251 in the World GenBank, was found capable of producing TiO2NPs. Our findings demonstrate the potential of biosynthesized TiO2NPs to manage antibiotic resistance and regulate the formation of biofilms. This presents a promising direction for the creation of novel antimicrobial agents or substitutes for use in clinical settings, particularly in the management of isolates capable of resisting multiple drugs.
Keywords