Discover Oncology (Apr 2024)
Cyclovirobuxine D inhibits hepatocellular carcinoma growth by inducing ferroptosis of hepatocellular carcinoma cells
Abstract
Abstract Objective Hepatocellular carcinoma (HCC) is one cancer with high death rates. Nowadays, there are no effective drugs to treat it. Cyclovirobuxine D (CVB-D) is the primary ingredient of the traditional Chinese medicine (TCM) Buxus microphylla. Here, we try to explore the impacts of CVB-D on human HCC cells and explain the potential mechanisms. Methods HepG2 and Huh-7 cells were used for our experiments. The cell viability and half inhibitory concentration (IC50) were detected by MTT assays. The apoptosis ratio was examined by Annexin V-FITC/7AAD staining and flow cytometry (FCM). The Fe2+ content was examined by ferrous ion content assays. The malondialdehyde (MDA) content was evaluated by lipid peroxidation MDA assays. The reactive oxygen species (ROS) level was examined by the DCFH-DA probe. The expression of apoptotic markers (Bax and Bcl-2) and ferroptosis-related proteins (GPX4 and FSP1) was detected by western blotting. The in vivo curative effect of CVB was explored using xenograft models established in C-NKG mice. Results The cell viability could be inhibited by CVB-D in HepG2 and Huh-7 cells. The IC50 value of CVB-D on HepG2 and Huh-7 cells are 91.19 and 96.29 µM at 48 h, and 65.60 and 72.80 µM at 72 h. FCM showed that the apoptosis rate was increased by CVB-D in HepG2 and Huh-7 cells. Next, ferrous ion content assays showed that the level of Fe2+ was increased by CVB-D in HepG2 and Huh-7 cells. Then, we found the level of MDA and ROS was increased by CVB-D. And the Fe2+ promotion by CVB-D could be reversed by Fer-1. Additionally, western blotting assays showed that the expression of GPX4 and FSP1 was inhibited by CVB-D in HepG2 and Huh-7 cells. Moreover, in vivo, CVB-D displayed excellent anticancer effects in HCC tumor-bearing C-NKG mice. Conclusion CVB-D suppresses the growth in HCC cells through ferroptosis.
Keywords