International Journal of Molecular Sciences (Jul 2015)

3-O-Acyl-epicatechins Increase Glucose Uptake Activity and GLUT4 Translocation through Activation of PI3K Signaling in Skeletal Muscle Cells

  • Manabu Ueda-Wakagi,
  • Rie Mukai,
  • Naoya Fuse,
  • Yoshiyuki Mizushina,
  • Hitoshi Ashida

DOI
https://doi.org/10.3390/ijms160716288
Journal volume & issue
Vol. 16, no. 7
pp. 16288 – 16299

Abstract

Read online

Tea catechins promote glucose uptake in skeletal muscle cells. In this study, we investigated whether the addition of an acyl group to the C-3 position of catechins to generate 3-O-acyl-catechins promoted glucose uptake in L6 myotubes. 3-O-Myristoyl-(−)-epicatechin (EC-C14) and 3-O-palmitoyl-(−)-epicatechin (EC-C16) promoted glucose uptake and translocation of glucose transporter (GLUT) 4 in the cells. The effect of 3-O-acyl-(−)-epicatechins was stronger than that of (−)-epicatechin (EC), whereas neither 3-O-myristoyl-(+)-catechin (C-C14) nor 3-O-palmitoyl-(+)catechin (C-C16) promoted glucose uptake or GLUT4 translocation as well as (+)-catechin (C). We further investigated an affinity of catechins and 3-O-acyl-catechins to the lipid bilayer membrane by using surface plasma resonance analysis. Maximum binding amounts of EC-C16 and C-C16 to the lipid bilayer clearly increased compared with that of (−)-EC and (+)-C, respectively. We also examined the mechanism of GLUT4 translocation and found EC-C14 and EC-C16 induced the phosphorylation of PI3K, but did not affect phosphorylation of Akt or IR. In conclusion, the addition of an acyl group to the C-3 position of (−)-EC increases its affinity for the lipid bilayer membrane and promotes GLUT4 translocation through PI3K-dependent pathways in L6 myotubes.

Keywords