Journal of Water, Sanitation and Hygiene for Development (Jun 2023)
Process performance evaluation of faecal matter treatment via black soldier fly
Abstract
Sustainable management of faecal matter is a prevailing global challenge. In this study, we assessed black soldier fly (BSF) process performance during co-treatment of faecal matter using kitchen waste (FM:KW) to formulate five feeding substrates. About 1 kg of each feed substrate was treated utilizing 5 g of 5-day-old BSF larvae after which 100 larvae were randomly picked at 3-day intervals from each treatment to monitor the larval weight gain across the treatment process. Larval days to 50% pupation, mean pupal yield, waste reduction rate (WR), bioconversion rates (BRs), and feed conversion rates (FCRs) were monitored for the process performance. Study results showed that the substrate 1:1 attained the best measures of high WR, waste reduction index (WRI), BR, FCR, and overall pre-pupal yield within a shorter development time. Further, we modelled the BSF larval weight gain using the modified Gompertz model to assess the least time for optimal biomass conversion for animal feed processing. The BSF larvae exhibited an S-shaped growth curve and the modified Gompertz model adequately quantified the BSF larval growth performance. In the future, our methodology will pave the way for effective treatment and valorization of faecal matter from onsite sanitation facilities, manage organic municipal wastes and provide alternative animal feed and bio-fertilizer. HIGHLIGHTS Effect of co-treatment on faecal conversion using black soldier fly is investigated.; BSFL flourished on substrates despite variations in nutrient composition.; Co-treatment significantly increased waste reduction and conversion.; The co-treatment strategy enhanced the performance efficiency of BSF larvae.; Modified Gompertz model revealed the BSFL optimal harvest time.;
Keywords