AAPS Open (Aug 2021)

Pharmacokinetics and biodistribution of a novel anticancer thyrointegrin αvβ3 antagonist: triazole modified tetraiodothyroacetic acid conjugated to polyethylene glycol (P-bi-TAT)

  • Kazutoshi Fujioka,
  • Kavitha Godugu,
  • Shaker A. Mousa

DOI
https://doi.org/10.1186/s41120-021-00036-z
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract We previously developed a triazole modified tetraiodothyroacetic acid (TAT) conjugated to a polyethylene glycol (PEG)-based thyrointegrin αvβ3 antagonist targeted compound, called P-bi-TAT. It exhibited potent anti-angiogenic and anticancer activities in vivo. The objective of the current study is to develop a quantitative bioanalytical method for P-bi-TAT using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and to elucidate pharmacokinetics (PK) and biodistribution of P-bi-TAT in animals. We used in-source collision-induced dissociation (CID) for ionization of P-bi-TAT in the positive mode, followed by multiple reaction monitoring (MRM) for quantification. P-bi-TAT was quantified using P-mono-TAT as an internal standard because of its similarity in structure and physicochemical properties to P-bi-TAT. The LOQ for P-bi-TAT was 30 ng/μL and the recovery efficiency was 76% with the developed method. Cmax and AUC results at different doses (1, 3, 10 mg/kg) in rats suggest that P-bi-TAT is dose-dependent within the range administered. Results for Cmax and AUC in monkeys at a low dose (25 mg/kg) were comparable to those in rats. Biodistribution of subcutaneously administered P-bi-TAT in the brain of rats ranged from 7.90 to 88.7 ng/g brain weight, and levels of P-bi-TAT in the brain were dose-dependent. The results suggest that P-bi-TAT is a potential candidate as a molecular-targeted anticancer therapeutic with blood-brain barrier permeability and acceptable PK parameters. Its accumulation in organs, toxicokinetic, and pharmacodynamics needs to be further investigated. Graphical Abstract

Keywords