Heliyon (Aug 2023)

Evaluation of the time-dependent osteogenic activity of glycerol incorporated magnesium oxide nanoparticles in induced calvarial defects

  • Ghada H. Naguib,
  • Gamal S. Abd El-Aziz,
  • Ahmad Almehmadi,
  • Amr Bayoumi,
  • Abdulghani I. Mira,
  • Ali Habiballah Hassan,
  • Mohamed T. Hamed

Journal volume & issue
Vol. 9, no. 8
p. e18757

Abstract

Read online

Introduction: Magnesium-based biomaterials have been explored for their potential as bone healing materials, as a result of their outstanding biodegradability and biocompatibility. These characteristics make magnesium oxide nanoparticles (MgO NPs) a promising material for treating bone disorders. The purpose of this investigation is to assess the osteogenic activity of newly-developed locally administered glycerol-incorporated MgO NPs (GIMgO NPs) in rabbits’ calvarial defects. Materials and methods: Characterization of GIMgO was done by X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Bilateral calvarial defects were created in eighteen New Zealand Rabbits, of which they were divided into 3 groups with time points corresponding to 2, 4, and 6 weeks postoperatively (n = 6). One defect was implanted with absorbable gel foam impregnated with GIMgO NPs while the other was implanted with gel foam soaked with glycerol (the control). The defects were assessed using histological, Micro-Computed Tomography (Micro-CT), and histometric evaluation. Results: The characterization of the GIMgO nanogel revealed the presence of MgO NPs and glycerol as well as the formation of the crystalline phase of the MgO NPs within the nanogel sample. The histological and micro-CT analysis showed time-dependent improvement of healing activity in the calvarial defects implanted with GIMgO NPs when compared to the control. Furthermore, the histometric analysis demonstrated a marked increase in the total area of new bone, connective tissue, new bone area and volume in the GIMgO NPs implanted site. Statistically, the amount of new bone formation was more significant at 6 weeks than at 2 and 4 weeks postoperatively in the calvarial defects implanted with GIMgO NPs as compared to the control. Conclusion: The locally applied GIMgO NPs demonstrated efficacy in promoting bone formation, with more significant effects observed over an extended period. These findings suggest its suitability for clinical use as a therapeutic alternative to enhance bone healing.

Keywords