Energies (Sep 2021)
Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings
Abstract
Energy management in protected cropping is critical due to the high cost of energy use in high-tech greenhouse facilities. The main purpose of this research was to investigate the optimal strategy to reduce cooling energy consumption, by regulating the settings (opening/closing) of either vents or curtains during the day, at the protected cropping facility at Western Sydney University. We measured daily changes in air temperature and energy consumption under four treatments (open/closed combinations of vents and shade screens) and developed an optimal cooling strategy for energy management using multi-temperature acquisition points at different heights within a greenhouse compartment. The optimal treatment (vents open/curtains closed) reduced energy load at the rooftop, thereby maintaining a desirable plant canopy temperature profile, and reducing cooling energy. Daily energy consumption was lowest for vents open/curtains closed (70.5 kWh) and highest for vents closed/curtains open (121 kWh). It was also found that delaying the operation of opening and closing of vents and curtains until the plant canopy temperature reached 25 °C reduced cooling energy consumption and decreased heating energy consumption in the morning (e.g., 08:00 to 10:00). The estimated savings of 1.83 kWh per 1 °C cooling between the optimal (vents open/curtains closed) and least optimal (vents closed/curtains open) conditions had the potential for significant energy savings at 494 kWh per °C over a crop cycle of nine months in warm weather conditions. However, selection of the optimal cooling strategy utilising control of vents and curtains must also account for the impact from other greenhouse environmental factors, including light, humidity, and CO2 concentration, which may be crop specific.
Keywords