Scientific Reports (Jun 2017)

Temperature gradients assist carbohydrate allocation within trees

  • Or Sperling,
  • Lucas C. R. Silva,
  • Aude Tixier,
  • Guillaume Théroux-Rancourt,
  • Maciej A. Zwieniecki

DOI
https://doi.org/10.1038/s41598-017-03608-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Trees experience two distinct environments: thermally-variable air and thermally-buffered soil. This generates intra-tree temperature gradients, which can affect carbon metabolism and water transport. In this study, we investigated whether carbohydrate allocation within trees is assisted by temperature gradients. We studied pistachio (Pistacia integerrima) to determine: (1) temperature-induced variation in xylem sugar concentration in excised branches; (2) changes in carbon allocation in young trees under simulated spring and fall conditions; and (3) seasonal variability of starch levels in mature orchard trees under field conditions. We found that warm branches had less sugar in perfused sap than cold branches due to increasing parenchyma storage. Simulated spring conditions promoted allocation of carbohydrates from cold roots to warm canopy and explained why starch levels surged in canopies of orchard trees during early spring. This driving force of sugar transport is interrupted in fall when canopies are colder than roots and carbohydrate redistribution is compartmentalized. On the basis of these findings, we propose a new mechanistic model of temperature-assisted carbohydrate allocation that links environmental cues and tree phenology. This data-enabled model provides insights into thermal “fine-tuning” of carbohydrate metabolism and a warning that the physiological performance of trees might be impaired by climatic changes.