Cells (Aug 2023)

StemRegenin-1 Attenuates Endothelial Progenitor Cell Senescence by Regulating the AhR Pathway-Mediated CYP1A1 and ROS Generation

  • Hye Ji Lim,
  • Woong Bi Jang,
  • Vinoth Kumar Rethineswaran,
  • Jaewoo Choi,
  • Eun Ji Lee,
  • Sangmi Park,
  • Yeoreum Jeong,
  • Jong Seong Ha,
  • Jisoo Yun,
  • Young Jin Choi,
  • Young Joon Hong,
  • Sang-Mo Kwon

DOI
https://doi.org/10.3390/cells12152005
Journal volume & issue
Vol. 12, no. 15
p. 2005

Abstract

Read online

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as β-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.

Keywords