PLoS Pathogens (May 2022)

Haemagglutinin substitutions N125D, D127E, D222G and R223Q improve replicative fitness and vaccine effectiveness of an A/H1N1pdm09 live attenuated influenza vaccine virus by enhancing α-2,6 receptor binding.

  • Rachael Dempsey,
  • Giulia Tamburrino,
  • Katarzyna E Schewe,
  • Jonathan Crowe,
  • Annalisa Nuccitelli,
  • Oliver Dibben

DOI
https://doi.org/10.1371/journal.ppat.1010585
Journal volume & issue
Vol. 18, no. 5
p. e1010585

Abstract

Read online

During 2013-14 and 2015-16, A/H1N1pdm09 live attenuated influenza vaccine (LAIV) viruses replicated inefficiently in primary human nasal epithelial cells (hNEC). This led to reduced vaccine effectiveness (VE) in quadrivalent formulations, mediated by inter-strain competition. By mutating the haemagglutinin (HA) protein, we aimed to enhance hNEC replication of a novel A/H1N1pdm09 vaccine strain to overcome competition and improve VE. Combinations of N125D, D127E, D222G and R223Q substitutions were introduced to the HA protein of A/Slovenia/2903/2015 (A/SLOV15). A/SLOV15 S13, containing all four HA substitutions, produced approximately 1000-fold more virus than parental V1 during hNEC infection. Immunogenicity in ferrets was increased by approximately 10-fold, without compromising yield in eggs or antigenic match to wild-type (wt) reference strains. Despite S13 and V1 being antigenically similar, only S13 protected ferrets from wt virus shedding and fever post-challenge. Crucially, these data suggested that enhanced fitness allowed S13 to overcome inter-strain competition in quadrivalent LAIV (QLAIV). This improved efficacy was later validated by real-world VE data. S13 displayed increased binding avidity to a mammalian-like α-2,6 receptor analogue (6-SLN), relative to V1, while maintaining avian-like 3-SLN avidity. In silico modelling of the HA receptor binding site revealed additional interactions in the S13:6-SLN binding network and a mild increase in 6-SLN binding energy, indicating a possible mechanism for increased α-2,6 receptor-binding avidity. These data confirm that rational HA mutagenesis can be used to optimise hNEC replication and VE for A/H1N1pdm09 LAIV viruses.