Land (Oct 2022)

Land Consumption Mapping with Convolutional Neural Network: Case Study in Italy

  • Giulia Cecili,
  • Paolo De Fioravante,
  • Luca Congedo,
  • Marco Marchetti,
  • Michele Munafò

DOI
https://doi.org/10.3390/land11111919
Journal volume & issue
Vol. 11, no. 11
p. 1919

Abstract

Read online

In recent years, deep learning (DL) algorithms have been widely integrated for remote sensing image classification, but fewer studies have applied it for land consumption (LC). LC is the main factor in land transformation dynamics and it is the first cause of natural habitat loss; therefore, monitoring this phenomenon is extremely important for establishing effective policies and sustainable planning. This paper aims to test a DL algorithm on high-resolution aerial images to verify its applicability to land consumption monitoring. For this purpose, we applied a convolutional neural networks (CNNs) architecture called ResNet50 on a reference dataset of six high-spatial-resolution aerial images for the automatic production of thematic maps with the aim of improving accuracy and reducing costs and time compared with traditional techniques. The comparison with the National Land Consumption Map (LCM) of ISPRA suggests that although deep learning techniques are not widely exploited to map consumed land and to monitor land consumption, it might be a valuable support for monitoring and reporting data on highly dynamic peri-urban areas, especially in view of the rapid evolution of these techniques.

Keywords