Sensors (Jul 2016)

Real Time 3D Facial Movement Tracking Using a Monocular Camera

  • Yanchao Dong,
  • Yanming Wang,
  • Jiguang Yue,
  • Zhencheng Hu

DOI
https://doi.org/10.3390/s16081157
Journal volume & issue
Vol. 16, no. 8
p. 1157

Abstract

Read online

The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

Keywords