Applied Sciences (Dec 2021)

Pose Estimation of Driver’s Head Panning Based on Interpolation and Motion Vectors under a Boosting Framework

  • Syed Farooq Ali,
  • Ahmed Sohail Aslam,
  • Mazhar Javed Awan,
  • Awais Yasin,
  • Robertas Damaševičius

DOI
https://doi.org/10.3390/app112411600
Journal volume & issue
Vol. 11, no. 24
p. 11600

Abstract

Read online

Over the last decade, a driver’s distraction has gained popularity due to its increased significance and high impact on road accidents. Various factors, such as mood disorder, anxiety, nervousness, illness, loud music, and driver’s head rotation, contribute significantly to causing a distraction. Many solutions have been proposed to address this problem; however, various aspects of it are still unresolved. The study proposes novel geometric and spatial scale-invariant features under a boosting framework for detecting a driver’s distraction due to the driver’s head panning. These features are calculated using facial landmark detection algorithms, including the Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). The proposed approach is compared with six existing state-of-the-art approaches using four benchmark datasets, including DrivFace dataset, Boston University (BU) dataset, FT-UMT dataset, and Pointing’04 dataset. The proposed approach outperforms the existing approaches achieving an accuracy of 94.43%, 92.08%, 96.63%, and 83.25% on standard datasets.

Keywords