APL Photonics (Aug 2016)

Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber

  • J. R. Koehler,
  • R. E. Noskov,
  • A. A. Sukhorukov,
  • A. Butsch,
  • D. Novoa,
  • P. St. J. Russell

DOI
https://doi.org/10.1063/1.4953373
Journal volume & issue
Vol. 1, no. 5
pp. 056101 – 056101-12

Abstract

Read online

It is interesting to pose the question: How best to design an optomechanical device, with no electronics, optical cavity, or laser gain, that will self-oscillate when pumped in a single pass with only a few mW of single-frequency laser power? One might begin with a mechanically resonant and highly compliant system offering very high optomechanical gain. Such a system, when pumped by single-frequency light, might self-oscillate at its resonant frequency. It is well-known, however, that this will occur only if the group velocity dispersion of the light is high enough so that phonons causing pump-to-Stokes conversion are sufficiently dissimilar to those causing pump-to-anti-Stokes conversion. Recently it was reported that two light-guiding membranes 20 μm wide, ∼500 nm thick and spaced by ∼500 nm, suspended inside a glass fiber capillary, oscillated spontaneously at its mechanical resonant frequency (∼6 MHz) when pumped with only a few mW of single-frequency light. This was surprising, since perfect Raman gain suppression would be expected. In detailed measurements, using an interferometric side-probing technique capable of resolving nanoweb movements as small as 10 pm, we map out the vibrations along the fiber and show that stimulated intermodal scattering to a higher-order optical mode frustrates gain suppression, permitting the structure to self-oscillate. A detailed theoretical analysis confirms this picture. This novel mechanism makes possible the design of single-pass optomechanical oscillators that require only a few mW of optical power, no electronics nor any optical resonator. The design could also be implemented in silicon or any other suitable material.