Genetics and Molecular Biology (Jan 2013)
Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd
Abstract
During the last decade, microsatellites (short tandem repeats or STRs) have been successfully used for animal genetic identification, traceability and paternity, although in recent year single nucleotide polymorphisms (SNPs) have been increasingly used for this purpose. An efficient SNP identification system requires a marker set with enough power to identify individuals and their parents. Genetic diagnostics generally include the analysis of related animals. In this work, the degree of information provided by SNPs for a consanguineous herd of cattle was compared with that provided by STRs. Thirty-six closely related Angus cattle were genotyped for 18 STRs and 116 SNPs. Cumulative SNPs exclusion power values (Q) for paternity and sample matching probability (MP) yielded values greater than 0.9998 and 4.32E-42, respectively. Generally 2-3 SNPs per STR were needed to obtain an equivalent Q value. The MP showed that 24 SNPs were equivalent to the ISAG (International Society for Animal Genetics) minimal recommended set of 12 STRs (MP ~ 10-11). These results provide valuable genetic data that support the consensus SNP panel for bovine genetic identification developed by the Parentage Recording Working Group of ICAR (International Committee for Animal Recording).