Scientific Reports (Jan 2024)
In vitro replicative potential of an HIV-1/MO intergroup recombinant virus compared to HIV-1/M and HIV-1/O parental viruses
Abstract
Abstract Genetic recombination is one of the major evolution processes of HIV-1. Despite their great genetic divergence, HIV-1 groups M and O can generate HIV-1/MO intergroup recombinants. The current description of 20 HIV-1/MO unique recombinant forms suggests a possible benefit of the recombination. The aim of this work was to study in vitro the replicative potential of HIV-1/MO recombinant forms. This analysis was based on a simple recombination pattern, [Ogag/pol-Menv], harboring a breakpoint in Vpr. A chimeric infectious molecular clone, pOM-TB-2016 was synthesized from HIV-1/M subtype B and HIV-1/O subgroup T and recombinant viruses were obtained by transfection/co-culture. To compare the replicative potential of these viruses, two markers were monitored in culture supernatants: Reverse Transcriptase (RT) activity and P24 antigen concentration. The results showed a superiority of the group M parental virus compared to group O for both markers. In contrast, for the recombinant virus, RT activity data did not overlap with the concentration of P24 antigen, suggesting a hybrid behavior of the recombinant, in terms of enzyme activity and P24 production. These results highlighted many hypotheses about the impact of recombination on replicative potential and demonstrated again the significant plasticity of HIV genomes and their infinite possibility of evolution.