BBA Advances (Jan 2022)

Fӧrster resonance energy transfer analysis of amyloid state of proteins

  • Valeriya Trusova,
  • Uliana Tarabara,
  • Olga Zhytniakivska,
  • Kateryna Vus,
  • Galyna Gorbenko

Journal volume & issue
Vol. 2
p. 100059

Abstract

Read online

The Förster resonance energy transfer (FRET) is a well-established and versatile spectroscopic technique extensively used for exploring a variety of biomolecular interactions and processes. The present review is intended to cover the main results of our FRET studies focused on amyloid fibrils, a particular type of disease-associated protein aggregates. Based on the examples of several fibril-forming proteins including insulin, lysozyme and amyloidogenic variants of N-terminal fragment of apolipoprotein A-I, it was demonstrated that: (i) the two- and three-step FRET with the classical amyloid marker Thioflavin T as an input donor has a high amyloid-sensing potential and can be used to refine the amyloid detection assays; (ii) the intermolecular time-resolved and single-molecule pulse interleaved excitation FRET can give quantitative information on the nucleation of amyloid fibrils; (iii) FRET between the membrane fluorescent probes and protein-associated intrinsic or extrinsic fluorophores is suitable for monitoring the membrane binding of fibrillar proteins, exploring their location relative to lipid-water interface and restructuring on a lipid matrix; (iv) the FRET-based distance estimation between fibril-bound donor and acceptor fluorophores can serve as one of the verification criteria upon structural modeling of amyloid fibrils.

Keywords