Journal of Cardiovascular Magnetic Resonance (Jun 2018)

Two-center clinical validation and quantitative assessment of respiratory triggered retrospectively cardiac gated balanced-SSFP cine cardiovascular magnetic resonance imaging in adults

  • Amol S Pednekar,
  • Hui Wang,
  • Scott Flamm,
  • Benjamin Y. Cheong,
  • Raja Muthupillai

DOI
https://doi.org/10.1186/s12968-018-0467-6
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Breath-hold (BH) requirement remains the limiting factor on the spatio-temporal resolution and coverage of the cine balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) imaging. In this prospective two-center clinical trial, we validated the performance of a respiratory triggered (RT) bSSFP cine sequence for evaluation of biventricular function. Methods Our study included 23 asymptomatic healthy subjects and 60 consecutive patients from Institute A (n = 39) and Institute B (n = 21) referred for a clinically indicated CMR study. We implemented a RT sequence with a respiratory synchronized drive to steady state (SS) of bSSFP signal, before the commencement of image data acquisition with prospective cardiac arrhythmia rejection and retrospectively cardiac gated reconstruction in real-time. Left (LV) and right (RV) ventricular function and LV mass were evaluated by using RT-bSSFP and conventional BH-bSSFP sequences with one cardiac cycle for SS preparation keeping all the imaging parameters identical. The performance of the sequences was evaluated by using quantitative and semi-quantitative metrics. Results Global LV and RV functional parameters and LV mass obtained from the RT-bSSFP and BH-bSSFP sequences were in good agreement. Quantitative metrics designed to capture fluctuation in SS signal intensity showed no significant difference between sequences. In addition, blood-to-myocardial contrast was nearly identical between sequences. The combined clinical score for image quality was excellent or good for 100% of cases with the BH-bSSFP and 83% of cases with the RT-bSSFP sequence. The de facto image acquisition time for RT-bSSFP was statistically significantly longer than that for conventional BH-bSSFP (7.9 ± 3.4 min vs. 5.1 ± 2.6 min). Conclusions Cine RT-bSSFP is an alternative for evaluating global biventricular function with contrast and spatio-temporal resolutions that are similar to those attained by using the BH-bSSFP sequence, albeit with a modest time penalty and a small reduction in image quality.

Keywords