Special Matrices (Oct 2018)
On Jordan triple (σ,τ)-higher derivation of triangular algebra
Abstract
Let R be a commutative ring with unity, A = Tri(A,M,B) be a triangular algebra consisting of unital algebras A,B and (A,B)-bimodule M which is faithful as a left A-module and also as a right B-module. In this article,we study Jordan triple (σ,τ)-higher derivation onAand prove that every Jordan triple (σ,τ)-higher derivation on A is a (σ,τ)-higher derivation on A.
Keywords