Animal (Jan 2023)
Protective effects of protocatechuic acid on growth performance, intestinal barrier and antioxidant capacity in broilers challenged with lipopolysaccharide
Abstract
‘Prohibition of the antibiotic uses’ aggravates the problem of intestinal diseases in poultry, and nutritional regulation has become a research hotspot, such as supplementation with active ingredients derived from plants. This research was conducted to investigate the effects of protocatechuic acid (PCA) on growth, intestinal barrier, and antioxidant capacity of broilers injected with lipopolysaccharide (LPS). Four hundred and eighty 1-day-old yellow feather broilers were randomly allocated to four groups, each with six replicates of 20 broilers. The treatments were basal diet + saline injection (CON) or LPS injection (CON-LPS), and diets with 300 or 600 mg/kg PCA supplementation + LPS injection (P300, P600). Birds were injected intramuscularly on 17th and 19th day of age, then sampled on day 21. The LPS injection significantly decreased BW and average daily gain of broilers, and compared with birds in CON-LPS, PCA supplementation increased (P 0.05). LPS decreased the villus height/crypt depth ratio (V/C) in jejunum of broilers, while PCA (P300 and P600) increased (P < 0.05) the jejunal villus height and V/C compared with birds in CON-LPS. LPS challenge increased jejunal malondialdehyde (MDA) concentration and decreased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in plasma (P < 0.05); compared with birds in CON-LPS, jejunal and plasmal GSH-Px activity (P300 and P600) and jejunal T-SOD activity (P300) were decreased (P < 0.05), and hepatic MDA concentration (P600) was increased (P < 0.05). LPS significantly decreased the transcript abundances of OCLN, ZO-1, JAM2, MUC2, SOD1, CAT and GPX in jejunal mucosa of birds, and supplementation with PCA attenuated the decrease in OCLN, JAM2, and MUC2 expression compared with birds in CON-LPS; moreover, 600 mg/kg PCA offset the deduction in SOD1, CAT and GPX expression. In conclusion, dietary supplementation with PCA could improve antioxidant status and attenuate the damage in intestinal barrier and loss in growth performance of LPS-challenged broilers, and 600 mg/kg PCA showed more improved effects on antioxidant capacity.