Advances in High Energy Physics (Jan 2023)

Improvement of q2 Resolution in Semileptonic Decays Based on Machine Learning

  • Panting Ge,
  • Xiaotao Huang,
  • Miroslav Saur,
  • Liang Sun

DOI
https://doi.org/10.1155/2023/8127604
Journal volume & issue
Vol. 2023

Abstract

Read online

The neutrino closure method is often used to obtain kinematics of semileptonic decays with one unreconstructed particle in hadron collider experiments. The kinematics of decays can be deducted by a twofold ambiguity with a quadratic equation. To resolve the twofold ambiguity, a novel method based on machine learning (ML) is proposed. We study the effect of different sets of features and regressors on the improvement of reconstructed invariant mass squared of ℓν system (q2). The result shows that the best performance is obtained by using the flight vector as the features and the multilayer perceptron (MLP) model as the regressor. Compared with the random choice, the MLP model improves the resolution of reconstructed q2 by ~40%. Furthermore, the possibility of using this method on various semileptonic decays is shown.