Cancer Management and Research (Jun 2020)

Lidocaine Suppresses Cell Proliferation and Aerobic Glycolysis by Regulating circHOMER1/miR-138-5p/HEY1 Axis in Colorectal Cancer

  • Du J,
  • Zhang L,
  • Ma H,
  • Wang Y,
  • Wang P

Journal volume & issue
Vol. Volume 12
pp. 5009 – 5022

Abstract

Read online

Juan Du,* Liying Zhang,* Hongzhong Ma, Yang Wang, Pengpeng Wang Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People’s Republic of China*These authors contributed equally to this workCorrespondence: Hongzhong Ma Tel +86-535-6691999Email [email protected]: Increasing evidence has uncovered the anticancer activity of lidocaine in many cancers. However, the role and the underlying molecular mechanism of lidocaine in colorectal cancer (CRC) remain poorly understood.Materials and Methods: Cell viability and apoptosis were measured by cell counting kit-8 assay and flow cytometry. Western blot was used to detect the protein of p53, CyclinD1, Pro-caspase-3, Cleaved-caspase-3, Pro-caspase-9, Cleaved-caspase-9, and hes-related family bHLH transcription factor with YRPW motif 1 (HEY1). Glycolytic metabolism was calculated by measuring the glucose consumption, lactate production and adenosine triphosphate (ATP) contents. The expression of circRNA homer scaffold protein 1 (circHOMER1), microRNA (miR)-138-5p and HEY1 mRNA was detected by quantitative real-time polymerase chain reaction. The interaction between miR-138-5p and circHOMER1 or HEY1 was analyzed using the dual-luciferase reporter assay. In vivo experiments were performed using the murine xenograft model.Results: Lidocaine suppressed CRC cell viability and aerobic glycolysis but promoted cell apoptosis in vitro as well as hindered tumor growth in vivo. CircHOMER1 was elevated in CRC tissues and cells, while lidocaine decreased circHOMER1 expression in CRC cells. Additionally, circHOMER1 overexpression reversed the anti-tumor activity of lidocaine in CRC cells. miR-138-5p was confirmed to interact with circHOMER1 and HEY1 in CRC cells directly, and circHOMER1 regulated HEY1 expression through repressing miR-138-5p expression. Besides, rescue assay indicated the anti-tumor activity mediated by lidocaine could be regulated by circHOMER1/miR-138-5p/HEY1 axis.Conclusion: Lidocaine mediated CRC cell viability loss, apoptosis induction and aerobic glycolysis inhibition by regulating circHOMER1/miR-138-5p/HEY1 axis, providing a novel treatment option for lidocaine to prevent the progression of CRC.Keywords: circHOMER1, miR-138-5p, HEY1, CRC, lidocaine, aerobic glycolysis

Keywords