Journal of Manufacturing and Materials Processing (Jun 2024)
Investigating Workpiece Deflection in Precise Electrochemical Machining of Turbine Blades
Abstract
Precise electrochemical machining (PECM) is being used increasingly to produce turbine blades (high-pressure compressors) from difficult-to-machine materials such as Inconel. However, the challenges associated with PECM are particularly pronounced for filigree workpieces characterized by high aspect ratios and thin-walled geometries. The need for high-pressure flushing within the working gap to renew the electrolyte poses a dilemma because it induces unwanted deflection in these thin-walled structures. This problem is intensified by the mechanical oscillation of the tool applied to promote flushing efficiency. The superposition of mechanical tool oscillation and turbulent flushing, which exacerbate fluid–structure interaction, has been identified as the essential cause of workpiece deflection. The aim of this paper is to present an experimental setup coupled with numerical methods to better investigate the phenomenon of workpiece deflection during PECM. In the first part of this work, a novel tool system for investigating the phenomenon of workpiece deflection in PECM is presented. The tool system combines typical PECM tool–workpiece arrangements for double-sided machining and a unique electrolytic mask that provides optical access to the working gap, allowing in situ measurements. After validating the tool system by experimental tests, the workpiece deflection is investigated using high-speed imaging. In a next step, analytical studies of the flushing conditions during machining operations are carried out. These investigations are followed by a structural investigation of the workpiece to improve the understanding of the deflection behavior of the workpiece. In addition, the effect on the blade tip caused by the continuously decreasing moment of inertia of the blade due to their thinning during machining is analyzed.
Keywords