International Journal of Molecular Sciences (Jul 2012)

Fraction from Wax Apple [<em>Syzygium samarangense</em> (Blume) Merrill and Perry] Fruit Extract Ameliorates Insulin Resistance via Modulating Insulin Signaling and Inflammation Pathway in Tumor Necrosis Factor α-Treated FL83B Mouse Hepatocytes

  • Szu-Chuan Shen,
  • Wen-Chang Chang,
  • Chiao-Li Chang

DOI
https://doi.org/10.3390/ijms13078562
Journal volume & issue
Vol. 13, no. 7
pp. 8562 – 8577

Abstract

Read online

Inflammation is associated with the development of insulin resistance in Type 2 diabetes mellitus. In the present study, mouse FL83B cells were treated with tumor necrosis factor-alpha (TNF-α) to induce insulin resistance, and then co-incubated with a fraction from wax apple fruit extract (FWFE). This fraction significantly increased the uptake of the nonradioactive fluorescent indicator 2-[<em>N</em>-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin resistant cells. Western blot analysis revealed that, compared with the TNF-α-treated control group, FWFE increased the expression of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein kinase B (Akt/PKB), phosphatidylinositol-3 kinase (PI3K), and glucose transporter 2 (GLUT-2), and increased IR tyrosyl phosporylation, in insulin resistant FL83B cells. However, FWFE decreased phosphorylation of c-Jun <em>N</em>-terminal kinases (JNK), but not the expression of the intercellular signal-regulated kinases<strong> (</strong>ERK), in the same cells. These results suggest that FWFE might alleviate insulin resistance in TNF-α-treated FL83B cells by activating PI3K-Akt/PKB signaling and inhibiting inflammatory response via suppression of JNK, rather than ERK, activation.

Keywords