Microbiology Spectrum (Apr 2024)
Evaluation of fendiline treatment in VP40 system with nucleation-elongation process: a computational model of Ebola virus matrix protein assembly
Abstract
ABSTRACTEbola virus (EBOV) infection is threatening human health, especially in Central and West Africa. Limited clinical trials and the requirement of biosafety level-4 laboratories hinder experimental work to advance our understanding of EBOV and the evaluation of treatment. In this work, we use a computational model to study the assembly and budding process of EBOV and evaluate the effect of fendiline on these processes in the context of fluctuating host membrane lipid levels. Our results demonstrate for the first time that the assembly of VP40 filaments may follow the nucleation-elongation theory, as this mechanism is critical to maintaining a pool of VP40 dimers for the maturation and production of virus-like particles (VLPs). We further find that this nucleation-elongation process is likely influenced by fluctuating phosphatidylserine (PS), which can complicate the efficacy of lipid-targeted therapies like fendiline, a drug that lowers cellular PS levels. Our results indicate that fendiline-induced PS reduction may actually increase VLP production at earlier time points (24 h) and under low fendiline concentrations (≤2 µM). However, this effect is transient and does not change the conclusion that fendiline generally decreases VLP production. In the context of fluctuating PS levels, we also conclude that fendiline can be more efficient at the late stage of VLP budding relative to earlier phases. Combination therapy with a VLP budding step-targeted drug may therefore further increase the treatment efficiency of fendiline. Finally, we also show that fendiline-induced PS reduction more effectively lowers VLP production when VP40 expression is high. Taken together, our results provide critical quantitative information on how fluctuating lipid levels (PS) affect EBOV assembly and egress and how this mechanism can be disrupted by lipid-targeting molecules like fendiline.IMPORTANCEEbola virus (EBOV) infection can cause deadly hemorrhagic fever, which has a mortality rate of ~50%–90% without treatment. The recent outbreaks in Uganda and the Democratic Republic of the Congo illustrate its threat to human health. Though two antibody-based treatments were approved, mortality rates in the last outbreak were still higher than 30%. This can partly be due to the requirement of advanced medical facilities for current treatments. As a result, it is very important to develop and evaluate new therapies for EBOV infection, especially those that can be easily applied in the developing world. The significance of our research is that we evaluate the potential of lipid-targeted treatments in reducing EBOV assembly and egress. We achieved this goal using the VP40 system combined with a computational approach, which both saves time and lowers cost compared to traditional experimental studies and provides innovative new tools to study viral protein dynamics.
Keywords