Mathematics (Nov 2021)
Spherical Distributions Used in Evolutionary Algorithms
Abstract
Performance of evolutionary algorithms in real space is evaluated by local measures such as success probability and expected progress. In high-dimensional landscapes, most algorithms rely on the normal multi-variate, easy to assemble from independent, identically distributed components. This paper analyzes a different distribution, also spherical, yet with dependent components and compact support: uniform in the sphere. Under a simple setting of the parameters, two algorithms are compared on a quadratic fitness function. The success probability and the expected progress of the algorithm with uniform distribution are proved to dominate their normal mutation counterparts by order n!!.
Keywords