Climate of the Past (Jul 2020)

Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum

  • F. Mekhaldi,
  • M. Czymzik,
  • F. Adolphi,
  • F. Adolphi,
  • J. Sjolte,
  • S. Björck,
  • A. Aldahan,
  • A. Brauer,
  • C. Martin-Puertas,
  • G. Possnert,
  • R. Muscheler

DOI
https://doi.org/10.5194/cp-16-1145-2020
Journal volume & issue
Vol. 16
pp. 1145 – 1157

Abstract

Read online

Several climate oscillations have been reported from the early Holocene superepoch, the best known of which is the Preboreal oscillation (PBO). It is still unclear how the PBO and the number of climate oscillations observed in Greenland ice cores and European terrestrial records are related to one another. This is mainly due to uncertainties in the chronologies of the records. Here, we present new, high-resolution 10Be concentration data from the varved Meerfelder Maar sediment record in Germany, spanning the period 11 310–11 000 years BP. These new data allow us to synchronize this well-studied record, as well as Greenland ice core records, with the IntCal13 timescale via radionuclide wiggle matching. In doing so, we show that the climate oscillations identified in Greenland and Europe between 11 450 and 11 000 years BP were not synchronous but terminated and began, respectively, with the onset of a grand solar minimum. A similar spatial anomaly pattern is found in a number of modeling studies on solar forcing of climate in the North Atlantic region. We further postulate that freshwater delivery to the North Atlantic would have had the potential to amplify solar forcing through a slowdown of the Atlantic meridional overturning circulation (AMOC) reinforcing surface air temperature anomalies in the region.