Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Colas-des-Francs Gérard
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Bouhelier Alexandre
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Leray Aymeric
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Vasilev Kirill
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Yu Xiao
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Hammani Kamal
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Arocas Juan-Miguel
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Gadret Gregory
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Markey Laurent
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 avenue A. Savary, F-21078 Dijon, France
Dubertret Benoit
Laboratoire de Physique et d’Étude des Matériaux, Centre National de la Recherche Scientifique, UMR8213, École Supérieure de Physique et de Chimie de la ville de Paris, 10 Rue Vauquelin, 75231 Paris, France
Micro-ring resonators made of titanium dioxide were decorated with local light sources comprising CdSe/CdS colloidal quantum dot aggregates. The active micro-resonators are operated to achieve efficient evanescent excitation of nearby co-planar integrated waveguides. Coupled-mode analysis and numerical simulations are used to capture the dynamic of the optical interaction between locally activated resonators and integrated waveguides. In this context, we exemplify the key role of resonator intrinsic loss. Next, we show that locally activated or bus-waveguide excited resonators are in optimum waveguide interaction for the same so-called critical coupling condition, although the physical origin of this property is different for each configuration. More importantly, we found that a locally activated resonator is a fabrication imperfection tolerant configuration for the coupling light of local sources into waveguides. This remarkable property originates from the opposite change of the power cycling into the resonator and the waveguide coupling efficiency as a function of the resonator-waveguide separation gap. By operating an 8-μm-radius ring resonator with loaded quality factors around Q = 2100, we experimentally demonstrate a 5.5-dB enhancement of the power coupled into the output waveguide compared to a direct local source waveguide excitation.