PLoS ONE (Jan 2022)

BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data.

  • Li-Pang Chen

DOI
https://doi.org/10.1371/journal.pone.0276664
Journal volume & issue
Vol. 17, no. 10
p. e0276664

Abstract

Read online

In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.