Shanghai Jiaotong Daxue xuebao (Feb 2022)
Design of a Virtual Assembly Gesture Library and Optimization of Ergonomics Evaluation
Abstract
In view of the low efficient of virtual human upper limb simulation in the virtual assembly environment and the inaccurate evaluation of ergonomics, this paper analyzes hand assembly action, defines hand joint structure, arm and hand size, establishes a parametric assembly gesture model, and forms a gesture library. The fuzzy algorithm is used to improve the rapid upper limb assessment (RULA) method. The trapezoidal function is used to optimize the evaluation score when the joint angle is at the critical value. The final evaluation result is obtained through the rule base. Strain index(SI) is used to evaluate the risk of musculoskeletal operations such as hands and wrists, and the comprehensive score is weighted with fuzzy RULA evaluation. The ergonomics of the virtual hand assembly process is continuously evaluated to capture the risk posture in the assembly operation. Finally, the above methods are integrated based on the 3D Experience platform and verified by the assembly of mobile communication components.
Keywords