Functional Characteristics of Serum Anti-SARS-CoV-2 Antibodies against Delta and Omicron Variants after Vaccination with Sputnik V
Elizaveta I. Radion,
Vladimir E. Mukhin,
Alyona V. Kholodova,
Ivan S. Vladimirov,
Darya Y. Alsaeva,
Anastasia S. Zhdanova,
Natalya Y. Ulasova,
Natalya V. Bulanova,
Valentin V. Makarov,
Anton A. Keskinov,
Sergey M. Yudin
Affiliations
Elizaveta I. Radion
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Vladimir E. Mukhin
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Alyona V. Kholodova
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Ivan S. Vladimirov
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Darya Y. Alsaeva
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Anastasia S. Zhdanova
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Natalya Y. Ulasova
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Natalya V. Bulanova
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Valentin V. Makarov
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Anton A. Keskinov
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Sergey M. Yudin
Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Schukinskaya 5, Building 1, Moscow 123182, Russia
Anti-SARS-CoV-2 vaccination leads to the production of neutralizing as well as non-neutralizing antibodies. In the current study, we investigated the temporal dynamics of both sides of immunity after vaccination with two doses of Sputnik V against SARS-CoV-2 variants Wuhan-Hu-1 SARS-CoV-2 G614-variant (D614G), B.1.617.2 (Delta), and BA.1 (Omicron). First, we constructed a SARS-CoV-2 pseudovirus assay to assess the neutralization activity of vaccine sera. We show that serum neutralization activity against BA.1 compared to D614G is decreased by 8.16-, 11.05-, and 11.16- fold in 1, 4, and 6 months after vaccination, respectively. Moreover, previous vaccination did not increase serum neutralization activity against BA.1 in recovered patients. Next, we used the ADMP assay to evaluate the Fc-mediated function of vaccine-induced serum antibodies. Our results show that the antibody-dependent phagocytosis triggered by S-proteins of the D614G, B.1.617.2 and BA.1 variants did not differ significantly in vaccinated individuals. Moreover, the ADMP efficacy was retained over up to 6 months in vaccine sera. Our results demonstrate differences in the temporal dynamics of neutralizing and non-neutralizing antibody functions after vaccination with Sputnik V.