Energies (Apr 2023)
Interrelated Solar and Thermal Plant Autonomous Generation Control Utilizing Metaheuristic Optimization
Abstract
In this study, the load frequency control of a two-area thermal generation system based on renewable energy sources is considered. When solar generation is used in one of the control areas, the system becomes nonlinear and complicated. Zero deviations in the frequencies and the flow of power through the tie lines are achieved by considering load disturbances. A novel grey wolf optimizer, which is a metaheuristic algorithm motivated by grey wolves is utilized for tuning the controller gains. The proportional, integral, and derivative gains values are optimized for the two-area Solar integrated Thermal Plant (STP). As the load connected to the system varies continuously with time, random load variation is also applied to observe the effectiveness of the proposed optimization method. Sensitivity analyses have also been adopted with the deviation in the time constants of different systems. Inertia constant variations of both areas are considered from −25% to +25%, with or without STP. The proposed algorithm shows good dynamic performance as shown from the simulation results in terms of settling time, overshoot values, and undershoot values. The power in the tie line achieves zero deviation quite rapidly in solar-based cases compared to those without STP.
Keywords