Scientific Reports (Jul 2024)
Effect of gamma irradiation on properties of the synthesized PANI-Cu nanoparticles assimilated into PS polymer for electromagnetic interference shielding application
Abstract
Abstract Conductive polymer nanocomposites for electromagnetic interference (EMI) shielding are important materials that can be combat the increasingly dangerous radiation pollution arising from electronic equipment and our surrounding environment. In this work, we have synthesized polyaniline-copper nanoparticles (PANI-Cu NPs) by the copper salt based oxidative polymerization method at room temperature and then added with different concentration (0, 1, 3 and 5 wt%) in polystyrene polymer forming PS/ PANI-Cu nanocomposites films by means of the traditional solution casting technique. The formed PANI-Cu NPs were investigated by UV/Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and SEM/EDX elemental mapping techniques. On the other hand, the prepared PS/PANI-Cu nanocomposites films were evaluated by UV and SEM, the mechanical properties of the nanocomposites films were evaluated and showed an improvement by added PANI-Cu NPs up to 3 wt% and 50 kGy gamma exposure dose. The PS/PANI-Cu nanocomposites films were examined as electromagnetic interference shielding material. Electromagnetic shielding effectiveness of the produced nanocomposites were tested in the X-band of the radio frequency range namely from 8 to 12 GHz using the vector network analyzer (VNA) and a proper wave guide. All samples were studied before and after 50 kGy gamma-ray irradiation under the same condition of pressure and temperature. The results showed that the nanocomposites have improved shielding properties.
Keywords