Biophysical Reports (Sep 2021)

Comparative Ca2+ channel contributions to intracellular Ca2+ levels in the circadian clock

  • Amber E. Plante,
  • Vishnu P. Rao,
  • Megan A. Rizzo,
  • Andrea L. Meredith

Journal volume & issue
Vol. 1, no. 1
p. 100005

Abstract

Read online

Circadian rhythms in mammals are coordinated by the central clock in the brain, located in the suprachiasmatic nucleus (SCN). Multiple molecular and cellular signals display a circadian variation within SCN neurons, including intracellular Ca2+, but the mechanisms are not definitively established. SCN cytosolic Ca2+ levels exhibit a peak during the day, when both action potential firing and Ca2+ channel activity are increased, and are decreased at night, correlating with a reduction in firing rate. In this study, we employ a single-color fluorescence anisotropy reporter (FLARE), Venus FLARE-Cameleon, and polarization inverted selective-plane illumination microscopy to measure rhythmic changes in cytosolic Ca2+ in SCN neurons. Using this technique, the Ca2+ channel subtypes contributing to intracellular Ca2+ at the peak and trough of the circadian cycle were assessed using a pharmacological approach with Ca2+ channel inhibitors. Peak (218 ± 16 nM) and trough (172 ± 13 nM) Ca2+ levels were quantified, indicating a 1.3-fold circadian variance in Ca2+ concentration. Inhibition of ryanodine-receptor-mediated Ca2+ release produced a larger relative decrease in cytosolic Ca2+ at both time points compared to voltage-gated Ca2+channels. These results support the hypothesis that circadian Ca2+ rhythms in SCN neurons are predominantly driven by intracellular Ca2+ channels, although not exclusively so. The study provides a foundation for future experiments to probe Ca2+ signaling in a dynamic biological context using FLAREs.