Sensors (Mar 2018)

Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD) Vision Sensor with Artificial Illumination

  • Juntao Xiong,
  • Zhen Liu,
  • Rui Lin,
  • Rongbin Bu,
  • Zhiliang He,
  • Zhengang Yang,
  • Cuixiao Liang

DOI
https://doi.org/10.3390/s18040969
Journal volume & issue
Vol. 18, no. 4
p. 969

Abstract

Read online

Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1) The RGB (red, green and blue). Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2) The improved Chan–Vese (C–V) level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3) Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.

Keywords