AIMS Mathematics (Jan 2022)
Hankel determinants of a Sturmian sequence
Abstract
Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.
Keywords