Energies (May 2022)
Distribution Characteristics of Micro Remaining Oil of Class III Reservoirs after Fracture Flooding in Daqing Oilfield
Abstract
The class III reservoir in the Daqing Oilfield has poor sand body development, poor reservoir physical properties, and poor effects of measures. Its water drive recovery degree is low and the remaining reserves are large. It is the key target oil layer of the Daqing Oilfield. Due to the sedimentary characteristics and reservoir physical properties of class III reservoirs, conventional EOR technology (chemical flooding) and conventional stimulation and injection measures (fracturing) have poor potential tapping effects on class III reservoirs. According to the special reservoir conditions and development characteristics of the class III reservoir in the Daqing Oilfield, fracture-flooding technology is innovatively proposed, which greatly improves the recovery of remaining oil in class III reservoirs. The rapid injection of hydraulic surface activators into the formation and displacement of the remaining oil in class III reservoirs through rock core flooding experiments were simulated in this paper. The nuclear magnetic resonance (NMR), confocal scanning laser, and computed tomography (CT)-scanning technologies were applied to study the remaining oil distribution after fracture flooding. The results show that: (1) After fracture flooding, the peak value of the T2 spectrum curve of NMR shifts to the left and the degree of middle and small pore space production increases obviously. (2) Confocal scanning laser study shows that the remaining oil in thin membranous and clustered forms on pore surfaces is highly utilized. (3) CT scan study shows that the remaining oil in membranous and clustered forms is effectively utilized after fracture flooding. In summary, fracture-flooding technology can improve the washing efficiency and sweep volume of class III reservoirs, thus enhancing the recovery efficiency of class III reservoirs.
Keywords