International Journal of COPD (Dec 2016)

Cigarette smoke extract induces placental growth factor release from human bronchial epithelial cells via ROS/MAPK(ERK-1/2)/Egr-1 axis

  • Wu D,
  • Yuan Y,
  • Lin Z,
  • Lai T,
  • Chen M,
  • Li W,
  • Lv Q,
  • Yuan B,
  • Li D,
  • Wu B

Journal volume & issue
Vol. Volume 11
pp. 3031 – 3042

Abstract

Read online

Dong Wu,1,* Yalian Yuan,1,* Zhixiu Lin,2,* Tianwen Lai,1 Min Chen,1 Wen Li,1 Quanchao Lv,1 Binfan Yuan,1 Dongmin Li,1 Bin Wu1 1Department of Respiratory, Institute of Respiratory Diseases, 2Department of Pharmacy, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Etiological evidence demonstrates that there is a significant association between cigarette smoking and chronic airway inflammatory disease. Abnormal expression of placental growth factor (PlGF) has been reported in COPD, and its downstream signaling molecules have been reported to contribute to the pathogenesis of airway epithelial cell apoptosis and emphysema. However, the signaling mechanisms underlying cigarette smoke extract (CSE)-induced PlGF expression in airway microenvironment remain unclear. Herein, we investigated the effects of reactive oxygen species (ROS)-dependent activation of the mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase1/2 [ERK-1/2])/early growth response-1 (Egr-1) pathway on CSE-induced PlGF upregulation in human bronchial epithelium (HBE). The data obtained with quantitative reverse transcription polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining analyses showed that CSE-induced Egr-1 activation was mainly mediated through production of ROS and activation of the MAPK (ERK-1/2) cascade. The binding of Egr-1 to the PlGF promoter was corroborated by an ELISA-based DNA binding activity assay. These results demonstrate that ROS activation of the MAPK (ERK-1/2)/Egr-1 pathway is a main player in the regulatory mechanism for CSE-induced PlGF production and that the use of an antioxidant could partly abolish these effects. Understanding the mechanisms of PlGF upregulation by CSE in the airway microenvironment may provide rational therapeutic interventions for cigarette smoking-related airway inflammatory diseases. Keywords: cigarette smoke, reactive oxygen species, airway epithelium, placental growth factor, extracellular signal-regulated kinase1/2, early growth response-1

Keywords