Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells
Antonio M. Scarfone,
Giovanni Barbero,
Luiz R. Evangelista,
Ervin K. Lenzi
Affiliations
Antonio M. Scarfone
Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) c/o Dipartimento di Scienza Applicata del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Giovanni Barbero
Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) c/o Dipartimento di Scienza Applicata del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Luiz R. Evangelista
Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR) c/o Dipartimento di Scienza Applicata del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Ervin K. Lenzi
Departamento de Física, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 87030-900, Paraná, Brazil
We propose an anomalous diffusion approach to analyze the electrical impedance response of electrolytic cells using time-fractional derivatives. We establish, in general terms, the conservation laws connected to a modified displacement current entering the fractional approach formulation of the Poisson–Nernst–Planck (PNP) model. In this new formalism, we obtain analytical expressions for the electrical impedance for the case of blocking electrodes and in the presence of general integrodifferential boundary conditions including time-fractional derivatives of distributed order. A conceptual scenario thus emerges aimed at exploring anomalous diffusion and surface effects on the impedance response of the cell to an external stimulus.