Redox Biology (Jul 2021)
Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages
Abstract
Macrophages are innate immune cells that internalize and present exogenous antigens to T cells via MHC class II proteins. They operate at sites of infection in a highly inflammatory environment, generated in part by reactive oxygen species, in particular the strong oxidant hypochlorous acid (HOCl) produced in the neutrophil respiratory burst. HOCl effectively kills a broad range of pathogens but can also contribute to host tissue damage at sites of inflammation. To prevent tissue injury, HOCl is scavenged by human serum albumin (HSA) and other plasma proteins in interstitial fluids, leading to the formation of variously modified advanced oxidation products (AOPPs) with pro-inflammatory properties. Previously, we showed that HOCl-mediated N-chlorination converts HSA and other plasma proteins into efficient activators of the phagocyte respiratory burst, but the role of these AOPPs in antigen presentation by macrophages remained unclear. Here, we show that physiologically relevant amounts of N-chlorinated HSA can strongly impair the capacity of THP-1-derived macrophages to present antigens to antigen-specific T cells via MHC class II proteins at multiple stages. Initially, N-chlorinated HSA inhibits antigen internalization by converting antigens into scavenger receptor (SR) ligands and competing with the modified antigens for binding to SR CD36. Later steps of antigen presentation, such as intracellular antigen processing and MHC class II expression are negatively affected, as well. We propose that impaired processing of pathogens or exogenous antigens by immune cells at an initial stage of infection prevents antigen presentation in an environment potentially hostile to cells of the adaptive immune response, possibly shifting it towards locations removed from the actual insult, like the lymph nodes. On the flip side, excessive retardation or complete inhibition of antigen presentation by N-chlorinated plasma proteins could contribute to chronic infection and inflammation.