Phage Endolysins as Promising and Effective Candidates for Use Against Uropathogenic <i>Escherichia coli</i>
Wojciech Wesołowski,
Aleksandra Łukasiak,
Sylwia Bloch,
Kaja Kuligowska,
Julia Neumann,
Natalia Lewandowska,
Emilia Węglińska,
Grzegorz Węgrzyn,
Bożena Nejman-Faleńczyk
Affiliations
Wojciech Wesołowski
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Aleksandra Łukasiak
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Sylwia Bloch
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Kaja Kuligowska
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Julia Neumann
Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk (UG), Wita Stwosza 63, 80-309 Gdansk, Poland
Natalia Lewandowska
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Emilia Węglińska
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Grzegorz Węgrzyn
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
Bożena Nejman-Faleńczyk
Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
The presented in silico and phylogenetic analysis of putative endolysins potentially produced by phages infecting uropathogenic Escherichia coli (UPEC) demonstrates their remarkable diversity. These proteins exhibit significant variations in sequence length, molecular weight, isoelectric point, and stability, as well as diverse functional domains determining their enzymatic activity, including lysin, lysozyme, hydrolase, amidase, and peptidase functions. Due to their predicted lytic properties, endolysins hold great promise in combating UPEC bacteria, including those within biofilms, which are often highly resistant to conventional treatments. Despite their potential, several challenges hinder the full utilization of endolysins. These include the relatively small number of identified proteins, challenges in the annotation process, and the scarcity of studies evaluating their efficacy in vitro and in vivo against Gram-negative bacteria. In this work, we emphasize these challenges while also underlining the potential of endolysins as an effective tool against UPEC infections. Their effectiveness could be significantly enhanced when combined with agents that disrupt the outer membrane of these bacteria, making them a promising alternative or complement to existing antimicrobial strategies. Further research is necessary to fully explore their therapeutic potential.