iScience (Oct 2019)

Cross Talk between eIF2α and eEF2 Phosphorylation Pathways Optimizes Translational Arrest in Response to Oxidative Stress

  • Marisa Sanchez,
  • Yingying Lin,
  • Chih-Cheng Yang,
  • Philip McQuary,
  • Alexandre Rosa Campos,
  • Pedro Aza Blanc,
  • Dieter A. Wolf

Journal volume & issue
Vol. 20
pp. 466 – 480

Abstract

Read online

Summary: The cellular stress response triggers a cascade of events leading to transcriptional reprogramming and a transient inhibition of global protein synthesis, which is thought to be mediated by phosphorylation of eukaryotic initiation factor-2α (eIF2α). Using mouse embryonic fibroblasts (MEFs) and the fission yeast S. pombe, we report that rapid translational arrest and cell survival in response to hydrogen peroxide-induced oxidative stress do not rely on eIF2α kinases and eIF2α phosphorylation. Rather, H2O2 induces a block in elongation through phosphorylation of eukaryotic elongation factor 2 (eEF2). Kinetic and dose-response analyses uncovered cross talk between the eIF2α and eEF2 phosphorylation pathways, indicating that, in MEFs, eEF2 phosphorylation initiates the acute shutdown in translation, which is maintained by eIF2α phosphorylation. Our results challenge the common conception that eIF2α phosphorylation is the primary trigger of translational arrest in response to oxidative stress and point to integrated control that may facilitate the survival of cancer cells. : Biological Sciences; Molecular Biology; Molecular Mechanism of Gene Regulation; Molecular Microbiology; Cell Biology Subject Areas: Biological Sciences, Molecular Biology, Molecular Mechanism of Gene Regulation, Molecular Microbiology, Cell Biology