BMC Microbiology (Dec 2022)

Transcriptional responses of human intestinal epithelial HT-29 cells to spore-displayed p40 derived from Lacticaseibacillus rhamnosus GG

  • Soo Ji Kang,
  • Jeong A Moon,
  • Do Yeong Son,
  • Kwang Won Hong

DOI
https://doi.org/10.1186/s12866-022-02735-3
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Backgrounds The aims of this study were to construct spore-displayed p40, a Lacticaseibacillus rhamnosus GG-derived soluble protein, using spore surface display technology and to evaluate transcriptional responses in human intestinal epithelial cells. Results p40 was displayed on the surface of Bacillus subtilis spores using spore coat protein CotG as an anchor protein. Effects of spore-displayed p40 (CotG-p40) on gene expression of intestinal epithelial cell line HT-29 were evaluated by transcriptome analysis using RNA-sequencing. As a result of differentially expressed gene (DEG) analysis, 81 genes were up-regulated and 82 genes were down-regulated in CotG-p40 stimulated cells than in unstimulated cells. Gene ontology enrichment analysis showed that CotG-p40 affected biological processes such as developmental process, metabolic process, cell surface receptor linked signaling pathway, and retinoic acid metabolic process. Gene-gene network analysis suggested that 10 DEGs (EREG, FOXF1, GLI2, PTGS2, SPP1, MMP19, TNFRSF1B, PTGER4, CLDN18, and ALDH1A3) activated by CotG-p40 were associated with probiotic action. Conclusions This study demonstrates the regulatory effects of CotG-p40 on proliferation and homeostasis of HT-29 cells. This study provided comprehensive insights into the transcriptional response of human intestinal epithelial cells stimulated by CotG-p40.

Keywords