Mathematics (Mar 2020)

The Derived Subgroups of Sylow 2-Subgroups of the Alternating Group, Commutator Width of Wreath Product of Groups

  • Ruslan V. Skuratovskii

DOI
https://doi.org/10.3390/math8040472
Journal volume & issue
Vol. 8, no. 4
p. 472

Abstract

Read online

The structure of the commutator subgroup of Sylow 2-subgroups of an alternating group A 2 k is determined. This work continues the previous investigations of me, where minimal generating sets for Sylow 2-subgroups of alternating groups were constructed. Here we study the commutator subgroup of these groups. The minimal generating set of the commutator subgroup of A 2 k is constructed. It is shown that ( S y l 2 A 2 k ) 2 = S y l 2 ′ A 2 k , k > 2 . It serves to solve quadratic equations in this group, as were solved by Lysenok I. in the Grigorchuk group. It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups C p i , p i ∈ N equals to 1. The commutator width of direct limit of wreath product of cyclic groups is found. Upper bounds for the commutator width ( c w ( G ) ) of a wreath product of groups are presented in this paper. A presentation in form of wreath recursion of Sylow 2-subgroups S y l 2 ( A 2 k ) of A 2 k is introduced. As a result, a short proof that the commutator width is equal to 1 for Sylow 2-subgroups of alternating group A 2 k , where k > 2 , the permutation group S 2 k , as well as Sylow p-subgroups of S y l 2 A p k as well as S y l 2 S p k ) are equal to 1 was obtained. A commutator width of permutational wreath product B ≀ C n is investigated. An upper bound of the commutator width of permutational wreath product B ≀ C n for an arbitrary group B is found. The size of a minimal generating set for the commutator subgroup of Sylow 2-subgroup of the alternating group is found. The proofs were assisted by the computer algebra system GAP.

Keywords