Mathematics (Jul 2023)

Performance of an Adaptive Optimization Paradigm for Optimal Operation of a Mono-Switch Class E Induction Heating Application

  • Saddam Aziz,
  • Cheung-Ming Lai,
  • Ka Hong Loo

DOI
https://doi.org/10.3390/math11133020
Journal volume & issue
Vol. 11, no. 13
p. 3020

Abstract

Read online

The progress of technology involves the continuous improvement of current machines to attain higher levels of energy efficiency, operational dependability, and effectiveness. Induction heating is a thermal process that involves the heating of materials that possess electrical conductivity, such as metals. This technique finds diverse applications, including induction welding and induction cooking pots. The optimization of the operating point of the inverter discussed in this study necessitated the resolution of a pair of non-convex mathematical models to enhance the energy efficiency of the inverters and mitigate switching losses. In order to determine the most advantageous operational location, a sophisticated surface optimization was conducted, requiring the implementation of a sophisticated optimization methodology, such as the adaptive black widow optimization algorithm. The methodology draws inspiration from the resourceful behavior of female black widow spiders in their quest for nourishment. Its straightforward control variable design and limited computational complexity make it a feasible option for addressing multi-dimensional engineering problems within confined constraints. The primary objective of utilizing the adaptive black widow optimization algorithm in the context of induction heating is to optimize the pertinent process parameters, including power level, frequency, coil design, and material properties, with the ultimate goal of efficiently achieving the desired heating outcomes. The utilization of the adaptive black widow optimization algorithm presents a versatile and robust methodology for addressing optimization problems in the field of induction heating. This is due to its capacity to effectively manage intricate, non-linear, and multi-faceted optimization predicaments. The adaptive black widow optimization algorithm has been modified in order to enhance the optimization process and guarantee the identification of the global optimum. The empirical findings derived from an authentic inverter setup were compared with the hypothetical results.

Keywords