Atmosphere (Jun 2024)

Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming

  • Jine Liu,
  • Xiaona Liu,
  • Jianbing Chen,
  • Yue Zhai,
  • Yu Zhu,
  • Fuqing Cui

DOI
https://doi.org/10.3390/atmos15060730
Journal volume & issue
Vol. 15, no. 6
p. 730

Abstract

Read online

As a result of global warming, the thawing settlement disasters of permafrost in the Qinghai–Tibet Engineering Corridor (QTEC) have intensified, which has serious effects on the safe operation of permafrost highway engineering. In this work, a prediction model for the thawing depth of permafrost subgrade in the QTEC under the climate warming scenario was established. Based on the survey results of permafrost ice content along the QTEC and the classification of thawing settlement risks, the zoning characteristics of thawing settlement of permafrost subgrade in the QTEC were obtained and analyzed. The results showed that the thawing depth of permafrost underlying the 26 m width subgrade in the QTEC will mainly remain below 9 m, and the area with a thawing depth of 6~9 m will have the widest spread within the next 20 years. The thawing settlement will be between 0.02 m and 5.45 m, with an average value of about 0.93 m after 20 years. Furthermore, after 50 years, the thawing depth of permafrost underlying the 26 m width subgrade will almost always be greater than 9 m, and the average thawing settlement will be about 1.12 m. Within the next 20 to 50 years, the risk of permafrost subgrade thawing settlement in the QTEC will be the most significant risk type, and this effect will mainly be distributed in the Kunlun Mountains, Chumar River Plain, Kekexili Mountains, Beiluhe Basin, Tanggula Mountains and intermountain Basins.

Keywords