Applied Sciences (Dec 2020)
Arsenic (V) Removal by an Adsorbent Material Derived from Acid Mine Drainage Sludge
Abstract
Arsenic is a toxic element that is often found in drinking water in developing countries in Asia, while arsenic poisoning is a serious worldwide human health concern. The objective of this work is to remove arsenic (V) (As(V)) from water by using an adsorbent material prepared from mine waste, called MIRESORBTM, which contains Fe, Al. The performance of the MIRESORBTM adsorbent was compared with granular ferric hydroxide (GFH), which is a commercial adsorbent. Adsorbents were characterized by using scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffractometry (XRD), and N2 sorption with Brunauer–Emmett–Teller (BET) analysis. The kinetics, isotherms, and pH-dependency of arsenic adsorption were interrogated to gain insights into arsenic adsorption processes. The maximum adsorption capacity of MIRESORBTM was 50.38 mg/g, which was higher than that of GFH (29.07 mg/g). Moreover, a continuous column test that used environmental samples of acid mine drainage was conducted to evaluate the MIRESORBTM material for practical applications. The column could be operated for more than 5840 bed volumes without a breakthrough. Successful operation of a pilot plant using MIRESORBTM adsorbent was also reported. Thus, these studies demonstrate MIRESORBTM as a highly efficient and economical adsorbent derived from recycled mine sludge waste.
Keywords