Biomedicines (Jun 2023)

Effect of Ambulatory Oxygen on the Respiratory Pattern during the 6 Min Walking Test in Patients with Interstitial Lung Diseases

  • Vittoria Ventura,
  • Magda Viani,
  • Francesco Bianchi,
  • Miriana d’Alessandro,
  • Piersante Sestini,
  • Elena Bargagli

DOI
https://doi.org/10.3390/biomedicines11071834
Journal volume & issue
Vol. 11, no. 7
p. 1834

Abstract

Read online

Introduction: Patients with pulmonary fibrosis experience early oxyhemoglobin desaturation under effort, which limits their ability to exercise and their quality of life. Recent studies have shown that in resting normoxaemic patients who become hypoxemic under exertion, administration of outpatient oxygen significantly improves stress dyspnoea and quality of life. It is unclear how this happens, since oxygen administration does not act directly on dyspnoea, and does not appear to have much effect on the heart rate and pulmonary artery pressure. We tested the hypothesis that correcting the hypoxaemia could reduce the increase in respiratory effort during the 6 min walking test, recording the breathing pattern during administration of oxygen or placebo. Methods: We evaluated 20 patients with fibrotic interstitial lung diseases (17 males and 3 females; mean age 72 ± 2 years; M ± SE) with a resting SpO2 ≥92 that fell to ≤88% during the 6 min walk test (6MWT). After first establishing the oxygen flow necessary to prevent desaturation, the patients underwent two further 6MWT, 15–20 min apart, one with administration of medical air and one with oxygen at the same flow, in randomized double-blind order. During the test, SpO2, heart rate, respiratory rate, tidal volume and minute ventilation (VE) were recorded, using a Spiropalm spirometer (Cosmed, Rome, Italy). Results: Oxygen saturation during the 6MWT decreased to a minimum value of 82.3% (95% CI 80.1–84.5%) during placebo and to 92% (90.3–93.7%) during oxygen with an average difference of 9.7% (7.8–11.6%, p p p p p p p < 0.0005). Conclusion: In our ILD patients, administration of outpatient oxygen during walking was related to a reduced increase in heart rate, respiratory rate, tidal volume and minute ventilation necessary to meet increased oxygen requirements, resulting in a lower workload on the cardiovascular system and on respiratory muscles and a consequent reduction in dyspnoea.

Keywords